Coronavirus Disease 2019 (COVID-19)
Updated: September 21, 2022
- This topic focuses on treatment of COVID-19 by healthcare providers.
- For additional topics see:
Table of Contents | COVID-19 Vaccines | What’s New in the COVID-19 Outbreak
COVID-19 History
- In late 2019, a new coronavirus – not seen previously in humans – was identified as the cause of human illness in Wuhan, China and given the name "novel coronavirus" (2019-nCoV).
- By late January 2020, the outbreak was declared a public health emergency of international concern by WHO and US Centers for Disease Control and Prevention (CDC).[1],[2]
- By mid February 2020, the virus was renamed Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and the disease it causes was named COVID-19.[3]
- in March 2020, the outbreak was categorized as a pandemic by WHO.[4]
NIH COVID-19 Treatment Panel
- Recommendation summaries in this topic are provided by the NIH COVID-19 Treatment Guidelines Panel.[5]
- Each recommendation includes 2 ratings, as shown below in the table. An uppercase letter (A, B, or C) that indicates the strength of the recommendation and a Roman numeral with or without a lowercase letter (I, IIa, IIb, or III) that indicates the quality of the evidence that supports the recommendation.
Strength of Recommendation | Quality of Evidence for Recommendation |
|
|
Adults with COVID-19
Nonhospitalized Adults
- Several therapeutic options are now available to treat nonhospitalized adults with mild to moderate COVID-19 who are at high risk of disease progression.[5]
- Several factors affect the selection of the best treatment option for a specific patient. These factors include the clinical efficacy and availability of the treatment option, the feasibility of administering parenteral medications (i.e., remdesivir), the potential for significant drug-drug interactions (e.g., those associated with the use of ritonavir-boosted nirmatrelvir [Paxlovid]), and the regional prevalence of variants of concern (e.g., the regional prevalence of the Omicron BA.2 subvariant may affect which anti-SARS-CoV-2 monoclonal antibodies [mAbs] can be used for treatment).
- Details on each therapeutic agent can be found below this section.[5]
Patient Disposition | Panel’s Recommendations |
Does Not Require Hospitalization or Supplemental Oxygen | For All Patients:
Preferred therapies. Listed in order of preference:
|
Discharged From Hospital Inpatient Setting in Stable Condition and Does Not Require Supplemental Oxygen | The Panel recommends against continuing the use of remdesivir (AIIa), dexamethasonea (AIIa), or baricitinib (AIIa) after hospital discharge. |
Discharged From Hospital Inpatient Setting and Requires Supplemental Oxygen | There is insufficient evidence to recommend either for or against the continued use of remdesivir or dexamethasone. |
Discharged From ED Despite New or Increasing Need for Supplemental Oxygen | The Panel recommends using dexamethasone 6 mg PO once daily for the duration of supplemental oxygen (dexamethasone use should not exceed 10 days) with careful monitoring for AEs (BIII). |
Because remdesivir is recommended for patients with similar oxygen needs who are hospitalized,j clinicians may consider using it in this setting. As remdesivir requires IV infusions for up to 5 consecutive days, there may be logistical constraints to administering remdesivir in the outpatient setting. | |
Rating of Recommendations: A = Strong; B = Moderate; C = Weak | |
a There is currently a lack of safety and efficacy data on the use of dexamethasone in outpatients with COVID-19. Using systemic glucocorticoids in this setting may cause harm. b For a list of risk factors, see the CDC webpage Underlying Medical Conditions Associated With Higher Risk for Severe COVID-19. c Ritonavir-boosted nirmatrelvir has significant drug-drug interactions. Clinicians should carefully review a patient’s concomitant medications and evaluate potential drug-drug interactions. See Drug-Drug Interactions Between Ritonavir-Boosted Nirmatrelvir (Paxlovid) and Concomitant Medications for more information. d If a patient requires hospitalization after starting treatment, the full treatment course can be completed at the health care provider’s discretion. e Administration of remdesivir requires 3 consecutive days of IV infusion. f Bebtelovimab is active in vitro against all circulating Omicron subvariants, but there are no clinical efficacy data from placebo-controlled trials that evaluated the use of bebtelovimab in patients who are at high risk of progressing to severe COVID-19. Therefore, bebtelovimab should be used only when the preferred treatment options are not available, feasible to use, or clinically appropriate. g Molnupiravir has lower efficacy than the preferred treatment options. Therefore, it should be used only when the preferred options are not available, feasible to use, or clinically appropriate. h These individuals should receive oximetry monitoring and close follow-up through telehealth, visiting nurse services, or in-person visits. i Provide an advanced level of home care, including supplemental oxygen (whether patients are receiving oxygen for the first time or are increasing their baseline oxygen requirements), pulse oximetry, laboratory monitoring, and close follow-up through telehealth, visiting nurse services, or in-person visits. j See Therapeutic Management of Hospitalized Adults With COVID-19. Key: AE = adverse event; CDC = Centers for Disease Control and Prevention; ED = emergency department; IV = intravenous; the Panel = the COVID-19 Treatment Guidelines Panel; PO = orally Source: NIH COVID-19 Treatment Guidelines Panel[5] |
Drug Name | Dosing Regimen | Time From Symptom Onseta |
Ritonavir-Boosted Nirmatrelvir (Paxlovid) | eGFR ≥60 mL/min:
| ≤5 days |
Remdesivir (RDV) | RDV 200 mg IV on Day 1, followed by RDV 100 mg IV once daily on Days 2 and 3.b,c Each infusion should be administered over 30–120 minutes. Patients should be observed for ≥1 hour after infusion as clinically appropriate. | ≤7 days |
Bebtelovimab (BEB) | BEB 175 mg as a single IV injection, administered over ≥30 seconds. Patients should be observed for ≥1 hour after injection. | ≤7 days |
Molnupiravir | Molnupiravir 800 mg PO twice daily for 5 days | ≤5 days |
a Per EUA criteria or clinical trial entry criteria. b See the Remdesivir section for a discussion of RDV use in patients with renal impairment. c If RDV is administered to patients who have a new or increasing need for supplemental oxygen but who are discharged from the ED because hospital resources are limited and inpatient admission is not possible, the total duration of therapy is ≤5 days. Key: BEB = bebtelovimab; ED = emergency department; eGFR = estimated glomerular filtration rate; EUA = Emergency Use Authorization; IV = intravenous; PO = orally; RDV = remdesivir; RTV = ritonavir Source: NIH COVID-19 Treatment Guidelines Panel[5] |
- See detailed rationales for these therapeutic recommendations
Hospitalized Adults
- The NIH COVID-19 Treatment Guidelines Panel recommends the following strategies for managing hospitalized patients with different severities of disease.[5]
- Details on each therapeutic agent can be found below this section.
Disease Severity | Therapy Recommendations for Antiviral or Immunomodulator | Recommendations for Anticoagulant Therapy | |
Clinical Scenario | Recommendation | ||
Hospitalized for Reasons Other Than COVID-19 | Patients with mild to moderate COVID-19 who are at high risk of progressing to severe COVID-19a | See Therapeutic Management of Nonhospitalized Adults With COVID-19. | For patients without an indication for therapeutic anticoagulation:
|
Hospitalized but Does Not Require Oxygen Supplementation | All patients | The Panel recommends against the use of dexamethasone (AIIa) or other systemic corticosteroids (AIII) for the treatment of COVID-19.b | |
Patients who are at high risk of progressing to severe COVID-19a | Remdesivirc (BIII) | ||
Hospitalized and Requires Conventional Oxygend | Patients who require minimal conventional oxygen | Remdesivire (BIIa) | For nonpregnant patients with D-dimer levels above the ULN who do not have an increased bleeding risk:
|
Most patients | Use dexamethasone plus remdesivire (BIIa). If remdesivir cannot be obtained, use dexamethasone (BI). | ||
Patients who are receiving dexamethasone and who have rapidly increasing oxygen needs and systemic inflammation | Add PO baricitinibf or IV tocilizumabf to 1 of the options above (BIIa). | ||
Hospitalized and Requires HFNC Oxygen or NIV | Most patients | Promptly start 1 of the following, if not already initiated:
| For patients without an indication for therapeutic anticoagulation:
|
Hospitalized and Requires MV or ECMO | Most patients | Promptly start 1 of the following, if not already initiated:
| |
Rating of Recommendations: A = Strong; B = Moderate; C = Weak | |||
a For a list of risk factors, see the CDC webpage Underlying Medical Conditions Associated With Higher Risk for Severe COVID-19. b Corticosteroids that are prescribed for an underlying condition should be continued. c Evidence suggests that the benefit of remdesivir is greatest when the drug is given early in the course of COVID-19 (e.g., within 10 days of symptom onset). d Conventional oxygen refers to oxygen supplementation that is not HFNC oxygen, NIV, MV, or ECMO. e If these patients progress to requiring HFNC oxygen, NIV, MV, or ECMO, the full course of remdesivir should still be completed. f If PO baricitinib and IV tocilizumab are not available or not feasible to use, PO tofacitinib can be used instead of PO baricitinib (BIIa), and IV sarilumab can be used instead of IV tocilizumab (BIIa). g Contraindications for the use of therapeutic anticoagulation in patients with COVID-19 include a platelet count < 50 x 109/L, Hgb < 8 g/dL, the need for dual antiplatelet therapy, bleeding within the past 30 days that required an ED visit or hospitalization, a history of a bleeding disorder, or an inherited or active acquired bleeding disorder. h If a JAK inhibitor or an anti-IL-6 receptor mAb is not readily available, start dexamethasone while waiting for the additional immunomodulator to be acquired. If neither of the other immunomodulators can be obtained, use dexamethasone alone. i Clinicians may consider adding remdesivir to 1 of the recommended immunomodulator combinations in patients who require HFNC oxygen or NIV, including immunocompromised patients. The Panel recommends against the use of remdesivir without immunomodulators in these patients (AIIa). Key: CDC = Centers for Disease Control and Prevention; ECMO = extracorporeal membrane oxygenation; ED = emergency department; HFNC = high-flow nasal cannula; Hgb = hemoglobin; ICU = intensive care unit; IL = interleukin; IV = intravenous; JAK = Janus kinase; mAb = monoclonal antibody; MV = mechanical ventilation; NIV = noninvasive ventilation; the Panel = the COVID-19 Treatment Guidelines Panel; PO = oral; ULN = upper limit of normal Source: NIH COVID-19 Treatment Guidelines Panel[5] |
- See detailed rationales for these therapeutic recommendations
Drug Name | Dosing Regimen | Comments |
Baricitinib (BAR) | Baricitinib dose is dependent on eGFR; duration of therapy is up to 14 days or until hospital discharge. |
|
Dexamethasone (DEX) | DEX 6 mg IV or PO once daily for up to 10 days or until hospital discharge. |
|
Heparin | Therapeutic dose of SUBQ LMWH or IV UFH |
|
Prophylactic dose of SUBQ LMWH or SUBQ UFH |
| |
Remdesivir (RDV) | RDV 200 mg IV once, then RDV 100 mg IV once daily for 4 days or until hospital discharge (whichever comes first) |
|
Sarilumab | Use the single-dose, prefilled syringe (not the prefilled pen) for SQ injection. Reconstitute sarilumab 400 mg in 100 cc 0.9% NaCl and administer as an IV infusion over 1 hour. |
|
Tocilizumab | Tocilizumab 8 mg/kg actual body weight (up to 800 mg) administered as a single IV dose. |
|
Tofacitinib | Tofacitinib 10 mg PO twice daily for up to 14 days or until hospital discharge (whichever comes first) |
|
Key: BAR = baricitinib; DEX = dexamethasone; eGFR = estimated glomerular filtration rate; IV = intravenous; LMWH = low-molecular-weight heparin; NaCl = sodium chloride; PO = oral; RDV = remdesivir; SUBQ = subcutaneous; UFH = unfractionated heparin; VTE = venous thromboembolism Source: NIH COVID-19 Treatment Guidelines Panel[5] |
Children with COVID-19
Nonhospitalized Children
- Data from the Centers for Disease Control and Prevention demonstrate a lower incidence of SARS-CoV-2 infection, severe disease, and death in children compared with adults.
- Although only a small percentage of children with COVID-19 will require medical attention, the percentage of intensive care unit admissions among hospitalized children is comparable to the percentage among hospitalized adults with COVID-19.
- There are no results available from clinical trials that evaluated treatments for COVID-19 in children, and data from observational studies are limited.
- In the absence of sufficient clinical trial data on the treatment of children with COVID-19, the NIH COVID-19 Treatment Guidelines Panel’s recommendations for the therapeutic management of children[5] are based largely on adult safety and efficacy data from clinical trials, the child’s risk of disease progression, and expert opinion.
Patient Disposition | Panel’s Recommendations | |
Aged 12–17 years | Aged < 12 years | |
Symptomatic, Regardless of Risk Factors |
|
|
High Riska,b |
|
|
Intermediate Riskb,e |
|
|
Low Riskb,f |
|
|
Rating of Recommendations: A = Strong; B = Moderate; C = Weak | ||
a Molnupiravir is not authorized by the FDA for use in children aged < 18 years and should not be used. b See Table 3b for the Panel’s framework for assessing the risk of progression to severe COVID-19 based on patient conditions and COVID-19 vaccination status. c Initiate treatment as soon as possible after symptom onset. d Bebtelovimab is the only anti-SARS-CoV-2 mAb active against the current dominant circulating Omicron subvariants. In nonhospitalized adults, bebtelovimab may be used as an alternative therapy when none of the preferred therapies (i.e., ritonavir-boosted nirmatrelvir, remdesivir) are available, feasible to use, or clinically appropriate. e The relative risk of severe COVID-19 for intermediate-risk patients is lower than the risk for high-risk patients but higher than the risk for low-risk patients. f Low-risk patients include those with comorbid conditions that have a weak or unknown association with severe COVID-19. Patients with no comorbidities are included in this group. Key: FDA = Food and Drug Administration; mAb = monoclonal antibody; the Panel = the COVID-19 Treatment Guidelines Panel Source: NIH COVID-19 Treatment Guidelines Panel[5] |
- See detailed rationales for these therapeutic recommendations
Hospitalized Children
Disease Severity | Panel’s Recommendations |
Hospitalized for COVID-19 | For children aged ≥12 years admitted for COVID-19, use prophylactic anticoagulation unless contraindicated (BIII). |
Does Not Require Supplemental Oxygen | For children admitted for COVID-19 who are at the highest risk of progression to severe COVID-19,a consider using remdesivirb for children aged 12–17 years (CIII). There is insufficient evidence for using remdesivir in children aged 28 days to < 12 years. |
For children admitted for reasons other than COVID-19 who have mild to moderate COVID-19 and are at the highest risk of progression,a refer to Therapeutic Management of Nonhospitalized Children With COVID-19. | |
Requires Conventional Oxygenc | Use 1 of the following options:
|
Requires Oxygen Through High-Flow Device or NIVd | Use 1 of the following options:
|
For children who do not have rapid (e.g., within 24 hours) improvement in oxygenation after initiation of dexamethasone, baricitinibe or tocilizumab can be considered for children aged 12–17 years (BIII) and for children aged 2–11 years (CIII) . | |
Requires MV or ECMOf | Dexamethasonef (AIII) |
For children who do not have rapid (e.g., within 24 hours) improvement in oxygenation after initiation of dexamethasone, baricitinibe or tocilizumab may be considered for children aged 12–17 years (BIII) and for children aged 2–11 years (CIII) . | |
Rating of Recommendations: A = Strong; B = Moderate; C = Weak | |
a For example, for children who are severely immunocompromised regardless of COVID-19 vaccination status and those who are unvaccinated and have additional risk factors for progression (see Therapeutic Management of Nonhospitalized Children With COVID-19). b The clinical benefit of remdesivir is greatest if it is initiated within 10 days of symptom onset. Remdesivir should be given for 5 days or until hospital discharge, whichever comes first. c Conventional oxygen refers to oxygen supplementation that is not high-flow oxygen, NIV, MV, or ECMO. d Patients who are receiving NIV or MV at baseline and require a substantial increase in baseline support should be treated per the recommendations for patients requiring new NIV or MV. e Tofacitinib is an alternative if baricitinib is not available (BIII). f For children who started receiving remdesivir before admission to the ICU, the remdesivir should be continued to complete the treatment course. Key: ECMO = extracorporeal membrane oxygenation; ICU = intensive care unit; MV = mechanical ventilation; NIV = noninvasive ventilation Source: NIH COVID-19 Treatment Guidelines Panel[5] |
Patient Condition | Panel’s Recommendations |
Multisystem inflammatory syndrome in children (MIS-C) | Initial treatment for MIS-C includes both immunomodulatory and antithrombotic therapy.
|
Rating of Recommendations: A = Strong; B = Moderate; C = Weak | |
a Duration of therapy may vary. For more information, see Therapeutic Management of Hospitalized Pediatric Patients With Multisystem Inflammatory Syndrome in Children (MIS-C) (With Discussion on Multisystem Inflammatory Syndrome in Adults [MIS-A]). b In certain patients with severe illness, intensification therapy may include dual therapy with higher-dose glucocorticoids and infliximab or anakinra. Anakinra and infliximab should not be given in combination.. c Infliximab should not be used in patients with macrophage activation syndrome. Key: CAA = coronary artery aneurysm; IBW = ideal body weight; IV = intravenous; IVIG = intravenous immunoglobulin; LV = left ventricular; MIS-C = multisystem inflammatory syndrome in children; PO = oral; SUBQ = subcutaneously Source: NIH COVID-19 Treatment Guidelines Panel[5] |
- See detailed rationales for these therapeutic recommendations
See Also
For health professionals
- Coronavirus COVID-19 Outbreak | What’s New
- Epidemic (Epi) Curves for Coronavirus COVID-19
- PubMed Searches for Coronavirus COVID-19
For the Public
References
- Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). World Health Organization. 30 January 2020. [https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-me...]
- Determination that a Public Health Emergency Exists. US Department of Health and Human Services. 31 January 2020. [https://www.phe.gov/emergency/news/healthactions/phe/Pages/2019-nCoV.aspx]
- World Health Organization (WHO) Novel Coronavirus(2019-nCoV) Situation Report – 22. February 11, 2020. [https://www.who.int/docs/default-source/coronaviruse/situation-reports/202...]
- WHO Director-General’s opening remarks at the media briefing on COVID-19. World Health Organization. 11 March 2020. [https://www.who.int/dg/speeches/detail/who-director-general-s-opening-rema...]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.gov/. Updated: August 8, 2022.
- A Multicenter, Adaptive, Randomized Blinded Controlled Trial of the Safety and Efficacy of Investigational Therapeutics for the Treatment of COVID-19 in Hospitalized Adults. ClinicalTrials.gov NCT04280705. [https://clinicaltrials.gov/ct2/show/NCT04280705]
- ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection. Updated March 22. [https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recomme...]
- ACTIV-3/TICO LY-CoV555 Study Group, Lundgren JD, Grund B, et al. A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(10):905-914. [PMID:33356051]
- ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-33. [PMID:22797452]
- About new coronavirus infectious disease confirmed in cruise ship during quarantine in Yokohama Port, Japan Ministry of Health, Labor and Welfare. 27 February 2020. [https://www.mhlw.go.jp/stf/newpage_09783.html]
- Advice on the use of masks in the community, during home care and in health care settings in the context of the novel coronavirus (2019-nCoV) outbreak. World Health Organization. Updated 28 January 2020
- Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020. [PMID:32101510]
- Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854-887. [PMID:32222812]
- Alshahrani MS, Sindi A, Alshamsi F, et al. Extracorporeal membrane oxygenation for severe Middle East respiratory syndrome coronavirus. Ann Intensive Care. 2018;8(1):3. [PMID:29330690]
- Alzghari SK, Acuña VS. Supportive Treatment with Tocilizumab for COVID-19: A Systematic Review. J Clin Virol. 2020;127:104380. [PMID:32353761]
- Angus DC, Berry S, Lewis RJ, et al. The REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) Study. Rationale and Design. Ann Am Thorac Soc. 2020;17(7):879-891. [PMID:32267771]
- Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am J Respir Crit Care Med. 2018;197(6):757-767. [PMID:29161116]
- Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014;160(6):389-97. [PMID:24474051]
- Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020. [PMID:32191259]
- Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020;25(5). [PMID:32046819]
- Bai HX, Hsieh B, Xiong Z, et al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology. 2020. [PMID:32155105]
- Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020. [PMID:32083643]
- Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 - Preliminary Report. N Engl J Med. 2020. [PMID:32445440]
- Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. 2020. [PMID:32412710]
- Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020. [PMID:32077789]
- Boulware DR, Pullen MF, Bangdiwala AS, et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N Engl J Med. 2020. [PMID:32492293]
- Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA. 2020. [PMID:32215590]
- Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865-73. [PMID:20197533]
- Brouwer PJM, Caniels TG, van der Straten K, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020. [PMID:32540902]
- CDC COVID-19 Response Team. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(12):343-346. [PMID:32214079]
- Cai J, Xu J, Lin D, et al. A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020.
- Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020. [PMID:32187464]
- Cavalcanti AB et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med. July 23, 2020 DOI: 10.1056/NEJMoa2019014
- Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020. [PMID:31986261]
- Chandrashekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020. [PMID:32434946]
- Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-815. [PMID:32151335]
- Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. [PMID:32007143]
- Chen W, Lan Y, Yuan X, et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg Microbes Infect. 2020;9(1):469-473. [PMID:32102625]
- Chen YT, Shao SC, Hsu CK, et al. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care. 2020;24(1):346. [PMID:32546191]
- Cheng HY, Jian SW, Liu DP, et al. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Intern Med. 2020. [PMID:32356867]
- Chia PY, Coleman KK, Tan YK, et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun. 2020;11(1):2800. [PMID:32472043]
- Choy KT, Yin-Lam Wong A, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020. [PMID:32251767]
- Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020. [PMID:32497510]
- Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. World Health Organization. Updated 28 January 2020. [https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected]
- Cohen MS, Nirula A, Mulligan MJ, et al. Effect of Bamlanivimab vs Placebo on Incidence of COVID-19 Among Residents and Staff of Skilled Nursing and Assisted Living Facilities: A Randomized Clinical Trial. JAMA. 2021;326(1):46-55. [PMID:34081073]
- Combes A, Hajage D, Capellier G, et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2018;378(21):1965-1975. [PMID:29791822]
- Combes A, Brodie D, Bartlett R, et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med. 2014;190(5):488-96. [PMID:25062496]
- Corman VM, Albarrak AM, Omrani AS, et al. Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2016;62(4):477-483.
- Coronavirus (COVID-19) Update: FDA Authorizes First Oral Antiviral for Treatment of COVID-19. FDA News. December 22, 2021. [https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-u...]
- Coronavirus (COVID-19) Update: FDA Continues to Facilitate Development of Treatments [News]. March 19, 2020. [https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-u...]
- Coronavirus Disease 2019 (COVID-19) Situation Reports. World Health Organization. [https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-...]
- Coronavirus Disease 2019 (COVID-19) in the U.S. Centers for Disease Control and Prevention. [https://www.cdc.gov/coronavirus/2019-ncov/cases-in-us.html]
- Coronavirus disease (COVID-19) technical guidance: Laboratory testing for 2019-nCoV in humans. World Health Organization. Accessed February 29, 2020. [https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-...]
- Criteria to Guide Evaluation of PUI for COVID-19. US Centers for Disease Control and Prevention. Revised February 27, 2020. [https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-criteria.html]
- Dashraath P, Wong JLJ, Lim MXK, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521-531. [PMID:32217113]
- Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Crit Care Med. 2017;45(6):1061-1093. [PMID:28509730]
- DeJong C, Wachter RM. The Risks of Prescribing Hydroxychloroquine for Treatment of COVID-19-First, Do No Harm. JAMA Intern Med. 2020. [PMID:32347894]
- Delaney JW, Pinto R, Long J, et al. The influence of corticosteroid treatment on the outcome of influenza A(H1N1pdm09)-related critical illness. Crit Care. 2016;20:75. [PMID:27036638]
- Detsky ME, Jivraj N, Adhikari NK, et al. Will This Patient Be Difficult to Intubate?: The Rational Clinical Examination Systematic Review. JAMA. 2019;321(5):493-503. [PMID:30721300]
- Ding Q, Lu P, Fan Y, Xia Y, Liu M. The clinical characteristics of pneumonia patients co-infected with 2019 novel coronavirus and influenza virus in Wuhan, China. Journal of medical virology. 2020.
- Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. [PMID:32444460]
- Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020. [PMID:32087114]
- Dong Y, Mo X, Hu Y, et al. Epidemiological Characteristics of 2143 Pediatric Patients With 2019 Coronavirus Disease in China. Pediatrics. 2020. [PMID:32179660]
- Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020;117(17):9490-9496. [PMID:32253318]
- EUA Authorized Serology Test Performance. U.S. Food & Drug Administration(FDA). [https://www.fda.gov/medical-devices/emergency-situations-medical-devices/e...]
- FDA-Approved Drugs: Remdesivir. Drugs@FDA. Accessed October 22, 2020. [https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm...]
- Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195(9):1253-1263. [PMID:28459336]
- Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020. [PMID:32171062]
- Flaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020. [PMID:32512579]
- Fosbøl EL, Butt JH, Østergaard L, et al. Association of Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use With COVID-19 Diagnosis and Mortality. JAMA. 2020. [PMID:32558877]
- Ganyani T, Kremer C, Chen D, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill. 2020;25(17). [PMID:32372755]
- Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020. [PMID:32074550]
- Gao Q, Bao L, Mao H, et al. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020. [PMID:32376603]
- Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458-464. [PMID:32298251]
- Geleris J, Sun Y, Platt J, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020. [PMID:32379955]
- Global Surveillance for human infection with coronavirus disease (COVID-19). World Health Organization. Updated 20 March 2020. [https://www.who.int/publications-detail/global-surveillance-for-human-infection-with-novel-coronavirus-(2019-ncov)]
- Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020. [PMID:32459919]
- Goldsmith CS, Tatti KM, Ksiazek TG, et al. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis. 2004;10(2):320-6. [PMID:15030705]
- Goligher EC, Tomlinson G, Hajage D, et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA. 2018;320(21):2251-2259. [PMID:30347031]
- Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020. [PMID:32250385]
- Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020. [PMID:32275812]
- Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020. [PMID:32109013]
- Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68. [PMID:23688302]
- Hager DN, Krishnan JA, Hayden DL, et al. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172(10):1241-5. [PMID:16081547]
- Harrison C. Coronavirus puts drug repurposing on the fast track [News]. Nature Biotechnology. February 27, 2020. [https://www.nature.com/articles/d41587-020-00003-1]
- He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-675. [PMID:32296168]
- Healthcare Professional Preparedness Checklist For Transport and Arrival of Patients With Confirmed or Possible COVID-19. US Centers for Disease Control and Prevention. Accessed 26 February 2020. [https://www.cdc.gov/coronavirus/2019-ncov/hcp/hcp-personnel-checklist.html]
- Helms J, Kremer S, Merdji H, et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med. 2020;382(23):2268-2270. [PMID:32294339]
- Hendren NS, Drazner MH, Bozkurt B, et al. Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. Circulation. 2020;141(23):1903-1914. [PMID:32297796]
- Hoehl S, Rabenau H, Berger A, et al. Evidence of SARS-CoV-2 Infection in Returning Travelers from Wuhan, China. N Engl J Med. 2020;382(13):1278-1280. [PMID:32069388]
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. [PMID:32142651]
- Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020. [PMID:32004427]
- Horby P, Lim WS, Emberson J, Mafham M, Bell J, et al. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. medRxiv. Published online June 22, 2020. :24
- Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020. [PMID:32146694]
- Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020. [PMID:31986264]
- Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020. [PMID:32401715]
- Infection prevention and control during health care when COVID-19 is suspected. World Health Organization. 19 March 2020. [https://www.who.int/publications-detail/infection-prevention-and-control-d...]
- Interim Guidance for Coronavirus Disease 2019 (COVID-19) for Event Planners. US Centers for Disease Control. March 15, 2020. [https://www.cdc.gov/coronavirus/2019-ncov/community/large-events/mass-gath...]
- Interim Infection Prevention and Control Recommendations for Patients with Confirmed 2019 Novel Coronavirus (2019-nCoV) or Persons Under Investigation for 2019-nCoV in Healthcare Settings. US Centers for Disease Control and Prevention (CDC). Updated February 3, 2020. [https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control.html]
- Interpretation of Epidemic (Epi) Curves during Ongoing Outbreak Investigations. US Centers for Disease Control and Prevention. [https://www.cdc.gov/foodsafety/outbreaks/investigating-outbreaks/epi-curves.html]
- Jüni P, Rothenbühler M, Bobos P, et al. Impact of climate and public health interventions on the COVID-19 pandemic: A prospective cohort study. CMAJ. 2020. [PMID:32385067]
- Kam KQ, Yung CF, Cui L, et al. A Well Infant with Coronavirus Disease 2019 (COVID-19) with High Viral Load. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020.
- Kimball A HK, Arons M, et al. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility — King County, Washington, March 2020. MMWR Morbidity and mortality weekly report. 2020;ePub: 27 March 2020.
- Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-147. [PMID:32291094]
- Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann Intern Med. 2020. [PMID:32422057]
- Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. World Health Organization. Updated 17 January 2020. [https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117]
- Laboratory testing for Middle East Respiratory Syndrome Coronavirus: Interim guidance. World Health Organization. 2018 [https://www.who.int/csr/disease/coronavirus_infections/mers-laboratory-tes...].
- Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020. [PMID:32081636]
- Lamontagne F, Meade MO, Hébert PC, et al. Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med. 2016;42(4):542-550. [PMID:26891677]
- Lauer SA, Grantz KH, Bi Q, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020. [PMID:32150748]
- Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020. [PMID:32253535]
- Lee MK, Choi J, Park B, et al. High flow nasal cannulae oxygen therapy in acute-moderate hypercapnic respiratory failure. Clin Respir J. 2018;12(6):2046-2056. [PMID:29392846]
- Lei J, Li J, Li X, et al. CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology. 2020;295(1):18. [PMID:32003646]
- Levi M, Thachil J, Iba T, et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438-e440. [PMID:32407672]
- Levin M. Childhood Multisystem Inflammatory Syndrome - A New Challenge in the Pandemic. N Engl J Med. 2020. [PMID:32598829]
- Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018;44(6):925-928. [PMID:29675566]
- Lewis D. Is the coronavirus airborne? Experts can't agree. Nature. 2020;580(7802):175. [PMID:32242113]
- Li L, Zhang W, Hu Y, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA. 2020. [PMID:32492084]
- Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020. [PMID:31995857]
- Lim J, Jeon S, Shin HY, et al. Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci. 2020;35(6):e79. [PMID:32056407]
- Liu W, Zhang Q, Chen J, et al. Detection of Covid-19 in Children in Early January 2020 in Wuhan, China. N Engl J Med. 2020. [PMID:32163697]
- Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020. [PMID:32199493]
- Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. JAMA. 2020. [PMID:32181795]
- Loubani OM, Green RS. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J Crit Care. 2015;30(3):653.e9-17. [PMID:25669592]
- Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. [PMID:32007145]
- Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020. [PMID:32187458]
- Luo Y, Ou R, Ling Y, et al. [The therapeutic effect of high flow nasal cannula oxygen therapy for the first imported case of Middle East respiratory syndrome to China]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015;27(10):841-4. [PMID:27132449]
- Lurie N, Saville M, Hatchett R, et al. Developing Covid-19 Vaccines at Pandemic Speed. N Engl J Med. 2020;382(21):1969-1973. [PMID:32227757]
- Mahase E. Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds. BMJ. 2020;369:m2422. [PMID:32546467]
- Mahévas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020;369:m1844. [PMID:32409486]
- Mancia G, Rea F, Ludergnani M, et al. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. N Engl J Med. 2020. [PMID:32356627]
- Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020. [PMID:32275288]
- Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020. [PMID:32405603]
- Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA. 2020. [PMID:32329799]
- Markel H, Lipman HB, Navarro JA, et al. Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic. JAMA. 2007;298(6):644-54. [PMID:17684187]
- McMichael TM CS, Pogosjans S, et al. COVID-19 in a Long-Term Care Facility — King County, Washington, February 27–March 9, 2020. MMWR Morbidity and mortality weekly report. 2020.
- McMichael TM CS, Pogosjans S, et al. COVID-19 in a Long-Term Care Facility — King County, Washington, February 27–March 9, 2020. MMWR Morbidity and mortality weekly report. 2020;69:339-342.
- Mehra MR, Desai SS, Ruschitzka F, et al. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020. [PMID:32450107]
- Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT Interval Prolongation Associated With Use of Hydroxychloroquine With or Without Concomitant Azithromycin Among Hospitalized Patients Testing Positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020. [PMID:32356863]
- Messerole E, Peine P, Wittkopp S, et al. The pragmatics of prone positioning. Am J Respir Crit Care Med. 2002;165(10):1359-63. [PMID:12016096]
- Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020. [PMID:32369666]
- Myers LC, Parodi SM, Escobar GJ, et al. Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. JAMA. 2020. [PMID:32329797]
- NIH Clinical Trial Shows Remdesivir Accelerates Recovery from Advanced COVID-19 [News]. US National Institute of Allergy and Infectious Diseases. April 29, 2020. [https://www.niaid.nih.gov/news-events/nih-clinical-trial-shows-remdesivir-...]
- NIH clinical trial of investigational vaccine for COVID-19 begins: study enrolling Seattle-based healthy adult volunteers [News]. March 16, 2020. [https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investiga...]
- NIH clinical trial of remdesivir to treat COVID-19 begins [News]. National Institutes of Health. Accessed Febrary 28, 2020. [https://www.nih.gov/news-events/news-releases/nih-clinical-trial-remdesivir-treat-covid-19-begins]
- National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564-75. [PMID:16714767]
- National Heart, Lung, and Blood Institute PETAL Clinical Trials Network, Moss M, Huang DT, et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med. 2019;380(21):1997-2008. [PMID:31112383]
- Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145-151. [PMID:32064853]
- O'Brien MP, Forleo-Neto E, Musser BJ, et al. Subcutaneous REGEN-COV Antibody Combination to Prevent Covid-19. N Engl J Med. 2021;385(13):1184-1195. [PMID:34347950]
- Ou X, Hua Y, Liu J, et al. Effect of high-flow nasal cannula oxygen therapy in adults with acute hypoxemic respiratory failure: a meta-analysis of randomized controlled trials. CMAJ. 2017;189(7):E260-E267. [PMID:28246239]
- Pan L, Mu M, Ren HG, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;[Epub ahead of print].
- Pan X, Chen D, Xia Y, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. The Lancet Infectious diseases. 2020.
- Pan A, Liu L, Wang C, et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA. 2020. [PMID:32275295]
- Pan F, Ye T, Sun P, et al. Time Course of Lung Changes On Chest CT During Recovery From 2019 Novel Coronavirus (COVID-19) Pneumonia. Radiology. 2020. [PMID:32053470]
- Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16. [PMID:20843245]
- Park SY, Kim YM, Yi S, et al. Coronavirus Disease Outbreak in Call Center, South Korea. Emerg Infect Dis. 2020;26(8). [PMID:32324530]
- Pham TM, Carpenter JR, Morris TP, et al. Ethnic Differences in the Prevalence of Type 2 Diabetes Diagnoses in the UK: Cross-Sectional Analysis of the Health Improvement Network Primary Care Database. Clin Epidemiol. 2019;11:1081-1088. [PMID:32021464]
- Prescott HC, Angus DC. Enhancing Recovery From Sepsis: A Review. JAMA. 2018;319(1):62-75. [PMID:29297082]
- Price-Haywood EG, Burton J, Fort D, et al. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. N Engl J Med. 2020. [PMID:32459916]
- Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020.
- RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N Engl J Med. 2020. [PMID:32678530]
- Randomised Evaluation of COVID-19 Therapy (RECOVERY). Low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19. 2020. Available at: https://www.recoverytrial.net/news/low-cost-dexamethasone-reduces-death-by-up-to-one-third-in-hospitalised-patients-with-severe-respiratory-complications-of-covid-19. Accessed June 23, 2020.
- Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43(3):304-377. [PMID:28101605]
- Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020. [PMID:32320003]
- Rochwerg B, Alhazzani W, Gibson A, et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med. 2015;41(9):1561-71. [PMID:25904181]
- Rochwerg B, Alhazzani W, Sindi A, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347-55. [PMID:25047428]
- Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam J, et al. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev. 2016;3:CD010406. [PMID:26950335]
- Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. [PMID:32179124]
- Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA. 2020. [PMID:32392282]
- Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-475. [PMID:32043983]
- Sanders JM, Monogue ML, Jodlowski TZ, et al. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020. [PMID:32282022]
- Scavone C, Brusco S, Bertini M, et al. Current pharmacological treatments for COVID-19: What's next? Br J Pharmacol. 2020. [PMID:32329520]
- Schultz MJ, Dunser MW, Dondorp AM, et al. Current challenges in the management of sepsis in ICUs in resource-poor settings and suggestions for the future. Intensive Care Med. 2017;43(5):612-624. [PMID:28349179]
- Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020. [PMID:32374370]
- Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020. [PMID:32219428]
- Shi H, Han X, Zheng C. Evolution of CT Manifestations in a Patient Recovered from 2019 Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. Radiology. 2020;295(1):20. [PMID:32032497]
- Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425-434. [PMID:32105637]
- Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in Nonhospitalized Adults With Early COVID-19: A Randomized Trial. Ann Intern Med. 2020. [PMID:32673060]
- Spinato G, Fabbris C, Polesel J, et al. Alterations in Smell or Taste in Mildly Symptomatic Outpatients With SARS-CoV-2 Infection. JAMA. 2020. [PMID:32320008]
- Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3(9):e343. [PMID:16968120]
- Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681-687. [PMID:32327758]
- Tabata S, Imai K, Kawano S, et al. Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis. Lancet Infect Dis. 2020. [PMID:32539988]
- Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-847. [PMID:32073213]
- Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. [PMID:32409561]
- Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-1026. [PMID:32338827]
- Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305-306. [PMID:32273591]
- The Lancet Editors . Expression of concern: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020. [PMID:32504543]
- Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020. [PMID:32112886]
- To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020. [PMID:32213337]
- Tobin MJ. Basing Respiratory Management of COVID-19 on Physiological Principles. Am J Respir Crit Care Med. 2020;201(11):1319-1320. [PMID:32281885]
- Torjesen I. Covid-19: Hydroxychloroquine does not benefit hospitalised patients, UK trial finds. BMJ. 2020;369:m2263. [PMID:32513810]
- Tracking Every Coronavirus Case in the U.S.: Full Map. New York Times. [https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html]
- Treon SP, Castillo J, Skarbnik AP, et al. The BTK-inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood. 2020. [PMID:32302379]
- Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020. [PMID:32410760]
- Wadhera RK, Wadhera P, Gaba P, et al. Variation in COVID-19 Hospitalizations and Deaths Across New York City Boroughs. JAMA. 2020. [PMID:32347898]
- Wang Y, Liu Y, Liu L, Wang X, Luo N, Ling L. Clinical outcome of 55 asymptomatic cases at the time of hospital admission infected with SARS-Coronavirus-2 in Shenzhen, China. The Journal of infectious diseases. 2020.
- Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020;11(1):2251. [PMID:32366817]
- Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020. [PMID:32031570]
- Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-271. [PMID:32020029]
- Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020. [PMID:32159775]
- Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-1578. [PMID:32423584]
- Wang Y, Dong C, Hu Y, et al. Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study. Radiology. 2020. [PMID:32191587]
- Wei M, Yuan J, Liu Y, et al. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA. 2020. [PMID:32058570]
- Wei WE, Li Z, Chiew CJ, et al. Presymptomatic Transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(14):411-415. [PMID:32271722]
- Whittaker E, Bamford A, Kenny J, et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA. 2020. [PMID:32511692]
- Williams E, Bond K, Zhang B, et al. Saliva as a non-invasive specimen for detection of SARS-CoV-2. J Clin Microbiol. 2020. [PMID:32317257]
- Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020. [PMID:32516797]
- Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2017;318(14):1335-1345. [PMID:28973363]
- Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. The Lancet Gastroenterology & Hepatology. 2020.
- Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020. [PMID:32167524]
- Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020. [PMID:32091533]
- Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. [PMID:32235945]
- Xie X, Zhong Z, Zhao W, et al. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology. 2020. [PMID:32049601]
- Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ (Clinical research ed). 2020;368:m606.
- Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47(5):1275-1280. [PMID:32107577]
- Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. [PMID:32085846]
- Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19):A multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020;80(4):388-393. [PMID:32112884]
- Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020. [PMID:32105632]
- Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020. [PMID:32150618]
- Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020. [PMID:32125362]
- Zaki AM, van Boheemen S, Bestebroer TM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-20. [PMID:23075143]
- Zeng L, Xia S, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr. Published online March 26, 2020.
- Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020. [PMID:32145190]
- Zhang L, Liu Y. Potential Interventions for Novel Coronavirus in China: A Systematic Review. J Med Virol. 2020. [PMID:32052466]
- Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-389. [PMID:32065057]
- Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. Published online March 28, 2020.
- Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020. [PMID:32221519]
- Zhao W, Zhong Z, Xie X, et al. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am J Roentgenol. 2020. [PMID:32125873]
- Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003;362(9393):1353-8. [PMID:14585636]
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. [PMID:32171076]
- Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. [PMID:31978945]
- Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177-1179. [PMID:32074444]
- Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-192. [PMID:32170560]
- qSARS-CoV-2 IgG/IgM Rapid Test Letter of Authorization. U.S. Food and Drug Administration. [https://www.fda.gov/media/136622/download]
- van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-1567. [PMID:32182409]